Optimization of collimator trajectory in volumetric modulated arc therapy: development and evaluation for paraspinal SBRT.
نویسندگان
چکیده
PURPOSE To develop a collimator trajectory optimization paradigm for volumetric modulated arc therapy (VMAT) and evaluate this technique in paraspinal stereotactic body radiation therapy (SBRT). METHOD AND MATERIALS We propose a novel VMAT paradigm, Coll-VMAT, which integrates collimator rotation with synchronized gantry rotation, multileaf collimator (MLC) motion, and dose-rate modulation. At each gantry angle a principal component analysis (PCA) is applied to calculate the primary cord orientation. The collimator angle is then aligned so that MLC travel is parallel to the PCA-derived direction. An in-house VMAT optimization follows the geometry-based collimator trajectory optimization to obtain the optimal MLC position and monitor units (MU) at each gantry angle. A treatment planning study of five paraspinal SBRT patients compared Coll-VMAT to standard VMAT (fixed collimator angle) and static field IMRT plans. Plan evaluation statistics included planning target volume (PTV) V95%, PTV-D95%, cord-D05%, and total beam-on time. RESULTS Variation of collimator angle in Coll-VMAT plans ranges from 26 degrees to 54 degrees , with a median of 40 degrees . Patient-averaged PTV V95% (94.6% Coll-VMAT vs. 92.1% VMAT and 93.3% IMRT) and D95% (22.5 Gy vs. 21.4 Gy and 22.0 Gy, respectively) are highest with Coll-VMAT, and cord D05% (9.8 Gy vs. 10.0 Gy and 11.7 Gy) is lowest. Total beam-on time with Coll-VMAT (5,164 MU) is comparable to standard VMAT (4,868 MU) and substantially lower than IMRT (13,283 MU). CONCLUSION Collimator trajectory optimization-based VMAT provides an additional degree of freedom that can improve target coverage and cord sparing of paraspinal SBRT plans compared with standard VMAT and IMRT approaches.
منابع مشابه
Stereotactic Body Radiotherapy for Small Lung Tumors in the University of Tokyo Hospital
Our work on stereotactic body radiation therapy (SBRT) for primary and metastatic lung tumors will be described. The eligibility criteria for SBRT, our previous SBRT method, the definition of target volume, heterogeneity correction, the position adjustment using four-dimensional cone-beam computed tomography (4D CBCT) immediately before SBRT, volumetric modulated arc therapy (VMAT) method for S...
متن کاملThe evaluation of lung doses for radiation pneumonia risk in stereotactic body radiotherapy: A comparison of intensity modulated radiotherapy, intensity modulated arc therapy, cyberknife and helical tomotherapy
Background: Radiation Pneumonia (RP) is one of the most extensive side effects in Stereotactic Body Radiotherapy (SBRT) of lung cancer. SBRT are performed by means of Intensity Modulated Radiotherapy (IMRT), Intensity Modulated Arc Therapy (IMAT), CyberKnife (CK) or Helical Tomotherapy (HT) treatment methods. In this study, we performed a plan study to determine the plan parameter such as the M...
متن کاملDirect leaf trajectory optimization for volumetric modulated arc therapy planning with sliding window delivery.
PURPOSE The authors propose a novel optimization model for volumetric modulated arc therapy (VMAT) planning that directly optimizes deliverable leaf trajectories in the treatment plan optimization problem, and eliminates the need for a separate arc-sequencing step. METHODS In this model, a 360° arc is divided into a given number of arc segments in which the leaves move unidirectionally. This ...
متن کاملPerformance evaluation of gated volumetric modulated arc therapy
Background: Aim of this study is to evaluate the accuracy of the gated volumetric modulated arc therapy (VMAT/RapidArc) using 2D planar dosimetry, DynaLog files and COMPASS 3D dosimetry system. Materials and Methods: Pre-treatment quality assurance of 10 gated VMAT plans was verified using 2D array and COMPASS 3D dosimetry system. Advantage of COMPASS over 2D planar is that it provides the clin...
متن کاملBinary Level-Set Shape Optimization Model and Algorithm for Volumetric Modulated Arc Therapy in Cancer Radiotherapy
Radiation therapy is one of the most commonly used treatment modalities for cancer. Its purpose is to deliver prescribed radiation doses to cancerous targets using high energy radiation beams while sparing nearby healthy organs. The treatment planning process of radiotherapy is an optimization problem, where beam parameters, such as directions, shapes, and intensities, can be adjusted in simula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of radiation oncology, biology, physics
دوره 77 2 شماره
صفحات -
تاریخ انتشار 2010